Compressibility Factors, Densities, and Residual Thermodynamic Properties for Methane–Water Mixtures

L. Lane Joffrion[†] and Philip T. Eubank*

Department of Chemical Engineering, Texas A&M University, College Station, Texas 77483-3122

Smoothed compressibility factors and residual thermodynamic properties for mixtures of 50, 25, and 10 mol % water vapor in methane are presented along with experimental densities. Pressure-enthalpy diagrams for the three mixtures are also provided. The measured densities cover a temperature range of 498.15-398.15 K and a pressure range of 72 kPa to 12 MPa. These densities were measured by use of a Burnett-Isochoric (B-I) apparatus and are accurate to ± 0.08 %. The adsorption phenomenon normally present in vapor measurements of polar components was taken into account during the B-I data analysis. Thus the densities, and therefore the residual properties, presented here are free of the errors caused by the adsorption process.

Introduction

The CH_4-H_2O mixture is important in the study and processing of wet natural gases. Natural gas (i.e., mostly methane) is often saturated with water upon production from the earth. Knowledge of the properties of water-methane mixtures is useful not only in design and operation of separation facilities but also in studies of more complex phase behavior involving the water-methane binary pair. An example of such complex phase behavior is found in the mixtures resulting from secondary and tertiary oil and gas recovery.

Precise experimental compressibility measurements of the CH_4-H_2O vapor mixture are not only important because they contribute to an understanding of wet natural gas behavior but also because they contribute to an understanding of polar-nonpolar molecular interactions. Such high-precision data are thus valuable for developing reliable equations of state and in calculating residual thermodynamic properties. B–I density measurements allow calculation of the residual properties with a greater accuracy than do either purely Burnett or purely isochoric measurements.

In this paper, we present smoothed compressibility factors, densities, and residual thermodynamic properties for the C-H₄-H₂O mixture at 50, 25, and 10 mol % water. This paper is analogous to a recent publication in this Journal (1) for CO_2 -H₂O mixtures at 50, 25, 10, 5, and 2 mol % water.

Previous Water/Methane Measurements

Rigby and Prausnitz (2) used solubility measurements of water in compressed methane to extract interaction second virial coefficients at 298, 323, 348, and 373 K. O'Sullivan and Smith (3) and Sultanov et al. (4) published solubility measurements of methane in water. In addition, Rettich et al. (5) published Henry's constants for methane in water from solubility measurements.

Experimental measurements involving hydrate in equilibrium with methane have been made by Marshall et al. (6) and Aoyagi et al. (7). Aoyagi et al. (7) used a regression technique to extract interaction second and third virials at 240, 250, 260, and 270 K.

 † Present address: Shell Development Co., P.O. Box 1380, Houston, TX 77251.

Most recently, Smith et al. (8) have measured excess enthalpies of water-methane vapor. They published results at water mole fractions of 0.35–0.67 and six temperatures ranging from 373.2 to 423.2 K. Using these excess enthalpies and assuming a second virial coefficient gas, they also extracted interaction second virial coefficients.

Other notable experimental measurements on watermethane mixtures are the dew-point pressure and equilibrium mole fraction measurements of Gillespie and Wilson (9) and Olds et al. (10). Also, Scheloske et al. (11) have measured dew-point pressures of water-sweet gas mixtures using a dry gas with 90% methane.

Experimental Section

Apparatus and Procedure. The apparatus used for these measurements was first described by Anderson et al. (12) and most recently by Patel (13). The apparatus is capable of measuring pressures as high as 16.5 MPa to within 0.01% above 0.7 MPa and \pm 0.07 kPa below 0.7 MPa. The temperature can be measured between 50 and 225 °C to \pm 10 mK.

The experimental procedure is the Burnett-isochoric (B-I) method proposed by Burnett (14) and discussed in detail by Pope et al. (15) and Hall and Eubank (16). The B-I method yields data over the entire $P-\rho-T$ surface with a single sample. This feature is very useful with mixtures since once a given sample has been prepared no duplication of it is required in order to complete the experimental measurements. In order to prepare the mixtures used in this study, a known mass of distilled water was charged into the secondary cell as a liquid. Methane, charged into the primary cell to a predetermined pressure, was then mixed with the water in the secondary cell. This mixing procedure is described in detail by Patel (13).

Materials. The methane gas used in sample preparation was supplied by Scientific Gas Products and certified as having a 99.995 mol % purity (with less than 30 ppm N₂, 5 ppm C₃H₆, 5 ppm C₂H₄, 10 ppm O₂, 10 ppm CO₂, 5 ppm C₂H₂, and 5 ppm H₂O). The water used in sample preparation was distilled repeatedly in a Barnstead Redistiller.

Data Analysis

Densities. Burnett (17) first proposed the original experimental technique and graphical analysis and much later (14) modified these procedures to a B-I-type analysis. Hall and Canfield (18) demonstrated a least-squares approach to the analysis of Burnett data. More recently, Holste et al. (19) have discussed both the Burnett and the Burnett-isochoric analyses. Both the Burnett and the Burnett-isochoric analyses work well for gases at temperatures well above the critical temperature where physical adsorption of the gas molecules onto the apparatus surface is not important. However, this phenomenon, which occurs at reduced temperatures near unity or less, causes the measured pressures to be lower than if there were no adsorption. These adsorption effects were taken into account during the analysis of the measured data. The analysis to account for these adsorption effects has been discussed in detail by Joffrion and Eubank (20). Additionally, it should be noted that the virial coefficients, dew-point measurements, and the densities of the 498.15 K isotherm have been published previously (20).

Table I.	Smoothed (Compressibility	v Factors.	Densities	. and Pro	perties for	the 50%	CH ₄ -50%	H ₂ O	Mixture ^a
					,	P			~~ 4 ~	

			2010-10-05, und 1			ange sinature	
		-	$U - U*_{ref}$,	$H - H^*_{ref}$,	$A - A*_{ref}$,	$G - G*_{ref}$,	$S - S^*_{ref}$
P, MPa	ρ , mol/m ³	Z	kJ/mol	kJ/mol	kJ/mol	kJ/mol	$kJ/(mol \cdot K)$
			<i>T</i> =	498.15 K	· · · · · · · · · · · · · · · · · · ·		
0.09076	21.94	0.9989	4.204	8.341	11.87	16.01	-0.0154
0.133 83	32.36	0.9984	4.198	8.333	13.48	17.61	-0.0186
0.197.30	47.75	0.9977	4.189	8.321	15.08	19.22	-0.0219
0 290 75	70.45	0.9965	4 175	8 303	16.69	20.82	-0.0251
0.428.24	103.93	0.9949	4.156	8.276	18.29	20.02	-0.0284
0.42024	152.22	0.0040	4.100	8 997	10.25	22.42	-0.0204
0.000 22	100.00	0.3324	4.120	0.207	13.30	24.01	-0.0317
0.920 32	220.20	0.9000	4.000	0.179	21.49	20.09	-0.0349
1.35909	333.08 400.01	0.9835	4.020	8.093	23.08	27.15	-0.0383
1.98861	492.21	0.9755	3.926	7.967	24.66	28.70	-0.0416
2.89773	726.03	0.9637	3.789	7.780	26.22	30.21	-0.0450
4.19548	1070.86	0.9460	3.587	7.505	27.76	31.67	-0.0485
			T =	185 65 K			
0 000 49	91.04	0.0000	2 700	7 000	11 67	15 70	0.0169
0.000 40	21.94	0.9900	0.799	1.002	10.07	17.70	-0.0102
0.130 46	32.36	0.9983	3.792	7.823	13.24	17.27	-0.0195
0.19231	47.75	0.9975	3.782	7.810	14.81	18.83	-0.0227
0.28338	70.45	0.9963	3.767	7.790	16.37	20.39	-0.0260
0.41732	103.93	0.9945	3.745	7.760	17.93	21.95	-0.0292
0.61403	153.33	0.9918	3.711	7.716	19.49	23.50	-0.0325
0.90226	226.20	0.9879	3.662	7.651	21.05	25.04	-0.0358
1.32320	333.68	0.9822	3.588	7.554	22.60	26.56	-0.0391
1.93478	492.21	0.9736	3.477	7.409	24.13	28.06	-0.0425
2.816.33	726.03	0.9607	3.310	7.189	25.65	29.53	-0.0460
2.01000	/20.00		5.010		20.00	_0,00	
			T =	• 473.15 K			
0.08619	21.94	0.9987	3.400	7.329	11.46	15.39	-0.0170
0.12708	32.36	0.9981	3.392	7.319	12.99	16.92	-0.0203
0.187.32	47.75	0.9972	3.381	7.304	14.52	18.44	-0.0235
0.276.00	70.45	0.0012	3 364	7 282	16.04	19.96	-0.0268
0.210.00	10.40	0.0000	2 2 2 2 0	7.940	17.56	21 47	-0.0200
0.40030	100.00	0.3340	0.000	7.249	10.00	21.47	-0.0301
0.097 79	103.33	0.9911	3.301	7.200	19.06	22.90	-0.0334
0.87808	226.20	0.9869	3.245	7.127	20.60	24.48	-0.0367
1.28701	333.68	0.9805	3.160	7.018	22.10	25.96	-0.0400
1.88020	492.21	0.9711	3.032	6.852	23.59	27.41	-0.0435
2.73302	726.03	0.9570	2.833	6.598	25.07	28.83	-0.0470
			π -	160 65 V			
0.000.00	01.04	0.0000	1 -	6 001	11.05	15.07	0.0170
0.083 90	21.94	0.9986	3.006	6.631	11.20	10.07	-0.0179
0.12370	32.36	0.9980	2.997	6.820	12.73	16.55	-0.0211
0.18233	47.75	0.9970	2.985	6.803	14.22	18.04	-0.0244
0.26860	70.45	0.9956	2.966	6.779	15.70	19.51	-0.0276
0.39542	103.93	0.9934	2.938	6.743	17.18	20.99	-0.0309
0.58149	153.33	0.9903	2.896	6.689	18.66	22.45	-0.0342
0.85376	226.20	0.9856	2.833	6.607	20.13	23.91	-0.0376
1.25049	333.68	0.9786	2.737	6.485	21.59	25.34	-0.0409
1.82482	492.21	0.9681	2.589	6.296	23.04	26.75	-0.0444
			_				
			T =	= 448.15 K			_
0.08162	21.94	0.9985	2.617	6.338	11.02	14.74	-0.0187
0.12032	32.36	0.9978	2.608	6.326	12.46	16.18	-0.0220
0.17732	47.75	0.9967	2.594	6.308	13.91	17.62	-0.0252
0.261 19	70.45	0.9951	2.573	6.281	15.35	19.06	-0.0285
0.384 43	103.93	0.9927	2.542	6.241	16.79	20.49	-0.0318
0.56513	153.33	0.9893	2.495	6.181	18.23	21.91	-0.0351
0.829 30	226,20	0.9840	2.425	6.091	19.66	23.32	-0.0385
1.213.63	333.68	0.9762	2.316	5.954	21.08	24.71	-0.0419
11210 00	000100						
			T =	= 423.15 K			
0.07704	21.94	0.9981	1.856	5.368	10.53	14.04	-0.0205
0.11355	32.36	0.9972	1.845	5.353	11.89	15.40	-0.0237
0.16730	47.75	0.9959	1.828	5.332	13.25	16.76	-0.0270
0.246 34	70.45	0.9940	1.802	5.299	14.62	18.11	-0.0303
0.362.36	103.93	0.9910	1.765	5.251	15.97	19.46	-0.0336
0.532 21	153.33	0.9867	1.708	5,179	17.33	20.80	-0.0369
0.779.90	226.20	0.9801	1.621	5.069	18.67	22.12	-0.0403
0.110.00	220,20	0.0001		0.000	20101		
			T =	= 398.15 K			
0.07245	21.94	0.9977	1.115	4.417	9.99	13.29	-0.0223
0.10677	32.36	0.9966	1.101	4.400	11.28	14.57	-0.0256
0.15726	47.75	0.9949	1.081	4.375	12.56	15.85	-0.0288
0.23143	70.45	0.9924	1.051	4.336	13.84	17.12	-0.0321
0.34015	103.93	0.9887	1.006	4.279	15.11	18.38	-0.0354

° Reference state: $H_{\rm ref}^* = 0.0$ and $S_{\rm ref}^* = 0.0$ at $P_{\rm ref} = 1.0$ kPa and $T_{\rm ref} = 273.16$ K.

Table II. Smoothed Compressibility Factors, Densities, and Residual Properties for the 75% CH₄-25% H₂O Mixture^a

	lootneu Compressi	billty Factors	, Densities, an	u icesiduai i iope	ities for the 15	70 CH4-20 70 H2	
		7	$U - U^*_{ref}$	$H - H^*_{ref}$	$A - A_{ref}^*$	$G - G*_{ref}$	$S - S_{ref}^*$
<i>P</i> , MP	a ρ , mol/m ^o	Z	kJ/mol	kJ/mol	kJ/mol	kJ/mol	kJ/(mol·K)
0 1 9 0 9	7 4410	0.0004	1 550 T	= 498.15 K	14.00	10.99	0.0000
0.1020	44.18 5 65.17	0.9994	4.009	8.698	14.69	18.83	-0.0203
0.2090	5 0619	0.9990	4.000	0.090	10.30	20.44	-0.0236
0.3970	0 14170	0.9900	4.040	0.019	17.91	22.00	-0.0208
0.0000	0 141.79	0.9979	4.029	0.002	19.02	23.00	-0.0301
0.0030	0 209.14	0.9970	4.007	0.037	21.12	20.20	-0.0334
1.2710	0 300.47	0.9900	4.470	0.000	22.73	20.00	-0.0366
1.0720	0 400.97	0.9935	4.430	0.040	24.33	20.44	-0.0399
2.1040	0 071.04	0.9900	4.000	0.400	20.92	30.03	-0.0433
4.0427	1 989.08	0.9863	4.263	0.340	27.51	31.60	-0.0467
0.9209	1 1409.00	0.9800	4.110	0.170	29.10	33.16	-0.0501
8.6701	1 2152.48	0.9726	3.097	1.925	30.67	34.70	-0.0537
			Т	= 485.65 K			
0.1782	6 44.18	0.9993	4.118	8.153	14.43	18.47	-0.0212
0.2628	5 65.17	0.9989	4.111	8.145	16.00	20.03	-0.0245
0.387 5	0 96.13	0.9984	4.101	8.132	17.57	21.60	-0.0277
0.5711	3 141.79	0.9976	4.085	8.114	19.13	23.16	-0.0310
0.8414	8 209.14	0.9965	4.063	8.087	20.70	24.72	-0.0343
1.2391	.4 308.47	0.9949	4.029	8.047	22.26	26.28	-0.0375
1.8233	2 455.97	0.9926	3.979	7.987	23.82	27.83	-0.0409
2.6800	671.04	0.9892	3.905	7.899	25.38	29.37	-0.0442
3.9331	6 989.68	0.9843	3.794	7.769	26.92	30.90	-0.0476
5.7602	0 1459.60	0.9774	3.628	7.575	28.46	32.41	-0.0511
8.4127	0 2152.48	0.9680	3.375	7.283	29.99	33.90	-0.0548
			Т	= 473.15 K			
0.1736	6 44.18	0.9992	3.685	7.615	14.16	18.09	-0.0221
0.2560	65.17	0.9988	3.677	7.606	15.69	19.62	-0.0254
0.3774	4 96.13	0.9982	3.666	7.593	17.22	21.14	-0.0286
0.5562	5 141.79	0.9973	3 650	7 573	18 74	22.67	-0.0319
0.8194	2 209.14	0.9961	3.625	7 544	20.27	24.18	-0.0352
1.206.3	8 308.47	0.9942	3.589	7.500	21.79	25.70	-0.0385
1 774 5	0 455.97	0.9915	3 535	7 436	23 31	27.21	-0.0418
2,606.8	3 671.04	0.9876	3 455	7 340	20.01	28.70	-0.0452
3.822.6	0 989.68	0.9819	3 332	7 195	26.32	30.19	-0.0486
5.590 9	8 1459.60	0.9738	3.146	6.976	27.82	31.65	-0.0521
						01.00	0.0021
0 160 0	5 4410	0.0001	2.950	= 460.65 K	19.00	10.01	0.0001
0.1090	0 44.10	0.9991	3.209	7.065	13.88	17.71	-0.0231
0.2492	4 00.17	0.9980	3.201	7.075	10.37	19.19	-0.0263
0.00/0	0 90.13 6 141.70	0.9979	3.239	7.061	10.80	20.67	-0.0296
0.041 3		0.9970	3.221	7.040	10.34	22.16	-0.0328
1 1795	5 209.14	0.9900	0.190	7.008	19.82	23.63	-0.0361
1.1705	0 00.47	0.99,34	3.107	0.901	21.30	25.11	-0.0394
1.7400	01 400.97	0.9903	3.099	0.891	22.78	26.57	-0.0427
2.000 2	0 071.04	0.9007	3.011	0.100	24.20	20.02	-0.0461
5.7110	51 505.00	0.3751	2.870	0.020	25.71	25.40	-0.0496
			Т	= 448.15 K			
0.1644	4 44.18	0.9989	2.840	6.563	13.59	17.31	-0.0240
0.2424	3 65.17	0.9984	2.832	6.552	15.03	18.75	-0.0272
0.357 3	96.13	0.9977	2.819	6.537	16.48	20.19	-0.0305
0.5264	b 141.79	0.9965	2.801	6.514	17.92	21.63	-0.0337
0.7752	209.14	0.9949	2.773	6.480	19.36	23.07	-0.0370
1.1406	6 308.47	0.9925	2.731	6.429	20.80	24.50	-0.0403
1.6763	4 455.97	0.9889	2.669	6.353	22.24	25.92	-0.0437
2.4592	671.04	0.9836	2.573	6.238	23.67	27.33	-0.0471
			Т	= 423.15 K			
0.1552	2 44.18	0.9986	2.026	5.540	12.96	16.48	-0.0258
0.2288	65.17	0.9980	2.017	5.528	14.33	17.84	-0.0291
0.3371	6 96.13	0.9970	2.002	5.510	15.69	19.20	-0.0324
0.4965	9 141.79	0.9956	1.981	5.484	17.05	20.56	-0.0356
0.7309	0 209.14	0.9934	1.949	5.444	18.41	21.91	-0.0389
1.0746	308.47	0.9903	1.901	5.385	19.77	23.25	-0.0422
1.5774	1 455.97	0.9855	1.829	5.296	21.12	24.59	-0.0456
			au	= 398.15 K			
0.1459	9 44.18	0.9982	1.241	4,545	12.29	15.60	-0.0278
0.2151	6 65.17	0.9974	1.230	4.532	13.58	16.88	-0.0310
0.3169	96.13	0.9962	1.214	4,511	14.86	18.16	-0.0343
0.4666	6 141.79	0.9943	1.190	4.481	16.14	19.43	-0.0375
0.6864	0 209.14	0.9915	1.153	4.436	17.42	20.70	-0.0408
						-	

^aReference state: $H_{\rm ref}^* = 0.0$ and $S_{\rm ref}^* = 0.0$ at $P_{\rm ref} = 1.0$ kPa and $T_{\rm ref} = 273.16$ K.

	· · · · · · · · · · · · · · · · · · ·		11 - 11* -	Н _ Н*	$\Delta = \Delta *$	G = C*	S _ S*
P, MPa	ho, mol/m ³	Ζ	kJ/mol	kJ/mol	$A - A - r_{ref}$, kJ/mol	kJ/mol	kJ/(mol·K)
			T =	= 498.15 K			
0.24721	59.71	0.9997	4.730	8.871	15.90	20.05	-0.0224
0 364 55	88.05	0.9996	4 723	8 864	17.51	21.65	-0.0257
0.537.57	129.87	0 9995	4 714	8 853	1912	23.26	-0.0289
0.00707	101 54	0.0000	4,600	0.000	20.72	23.20	0.0200
1 1 0 0 0	171.04	0.9992	4.033	0.000	20.73	24.07	-0.0322
1.168.64	282.49	0.9989	4.0/8	8.819	22.34	26.48	-0.0355
1.722.77	416.63	0.9985	4.647	8.782	23.95	28.08	-0.0387
2.53935	614.44	0.9979	4.601	8.734	25.55	29.68	-0.0421
3.74269	906.17	0.9973	4.533	8.664	27.16	31.29	-0.0454
5.51701	1336.37	0.9968	4.434	8.562	28.76	32.89	-0.0488
8.13851	1970.75	0.9971	4.287	8.417	30.36	34.49	-0.0523
12.03263	2906.13	0.9997	4.071	8.211	31.97	36.11	-0.0560
			<i>T</i> =	= 473.15 K			
0.23476	59.71	0.9996	3.822	7.754	15.32	19.25	-0.0243
0.34616	88.05	0.9994	3.815	7.747	16.85	20.78	-0.0275
0.510 39	129.87	0.9991	3,805	7,735	18.38	22.31	-0.0308
0 752 42	191 54	0.9986	3 789	7 718	19.90	23.83	-0.0341
1 109 03	282 49	0.9980	3 767	7 693	21 43	25.35	-0.0373
1 694 99	416.63	0.0000	3 734	7.656	21.40	20.00	-0.0406
1.034.22	614 44	0.0060	0.704	7.000	22.30	20.00	-0.0400
2.40/30	014.44	0.9960	0.000	7.003	24.40	20.00	-0.0439
3.544 95	906.17	0.9945	3.612	7.524	26.00	29.91	-0.0473
5.21860	1336.37	0.9927	3.505	7.411	27.52	31.42	-0.0507
7.68323	1970.75	0.9911	3.347	7.246	29.03	32.93	-0.0543
11.326 88	2906.13	0.9908	3.114	7.011	30.55	34.44	-0.0580
			<i>T</i> =	= 448.15 K			
0.22231	59.71	0.9993	2.949	6.672	14.69	18.41	-0.0262
0.32777	88.05	0.9990	2.941	6.664	16.14	19.86	-0.0294
0.48319	129.87	0.9986	2.930	6.651	17.58	21.30	-0.0327
0.71217	191.54	0.9979	2.914	6.632	19.03	22.75	-0.0360
1.04935	282.49	0.9970	2.890	6.605	20.47	24.19	-0.0392
1.54552	416.63	0.9957	2.854	6.564	21.91	25.62	-0.0425
2,275.03	614.44	0.9938	2.802	6.504	23.35	27.06	-0.0459
3 346 47	906.17	0 9912	2 7 2 4	6 417	24 79	28.48	-0.0492
1 018 40	1996 97	0.0012	2.124	6 200	26.22	29.90	-0.0527
7 994 05	1070 75	0.0820	2.000	6 104	20.22	20.00	-0.0563
1.224.00	1970.75	0.9009	2.400	0.104	27.00	51.52	0.0000
0 200 85	50 71	0 0001	2 109 T =	= 423.15 K	14.01	17 53	_0.0291
0.20200	00.11 00 AE	0.0007	2.10 0 9.101	5 615	15.00	18 90	_0.0201
0.30937	55.UD	0.9987	2.101	0.010	10.38	10.02	-0.0314
0.455 98	129.87	0.9980	2.089	5.601	16.74	20.25	-0.0346
0.67188	191.54	0.9971	2.072	5.580	18.10	21.61	-0.0379
0.989 59	282.49	0.9958	2.046	5.549	19.47	22.97	-0.0412
1.45664	416.63	0.9938	2.008	5.504	20.83	24.32	-0.0445
2.14231	614.44	0.9911	1.952	5.438	22.18	25.67	-0.0478
3.14711	906.17	0.9872	1.868	5.341	23.54	27.01	-0.0512
4.616 39	1336.37	0.9819	1.744	5.199	24.88	28.34	-0.0547
			T =	= 398.15 K			
0.197 39	59.71	0.9988	1.303	4.609	13.28	16.59	-0.0301
0.29095	88.05	0.9982	1.294	4.599	14.57	17.87	-0.0333
0.42875	129.87	0.9973	1.282	4.583	15.85	19.15	-0.0366
0.631 55	191.54	0.9961	1.263	4,560	17.13	20.43	-0.0399
0 929 73	282 49	0.9943	1.235	4.526	18 41	21 70	-0.0431
1 367 55	416 69	0.9916	1 194	4 477	19.69	22 97	-0.0465
T100100	410.00	0.0010	1.107		10.00	44.01	0.0400

^aReference state: $H_{\text{ref}}^* = 0.0$ and $S_{\text{ref}}^* = 0.0$ at $P_{\text{ref}} = 1.0$ kPa and $T_{\text{ref}} = 273.16$ K.

Residual Properties. The thermodynamic properties of internal energy (*U*), enthalpy (*H*), Helmholtz free energy (*A*), Gibbs free energy (*G*), and entropy (*S*) may be conveniently calculated with the compressibilities and densities of the above analysis using the concept of residual properties. A residual property is defined as the property value of the real fluid less that property value in the perfect gas state. Various forms of such residual properties are discussed by Hall et al. (*21*). The form of residual property at the temperature and density of the fluid less the perfect gas property at a reference temperature, T_{ref} , and reference pressure, P_{ref} . Thus, if *M* denotes the properties *U*, *H*, *A*, *G*, and *S*, then the residual property is defined as

$$M - M^*_{\text{ref}} \equiv M(T,\rho) - M^*(T_{\text{ref}}, P_{\text{ref}}/RT_{\text{ref}})$$
(1)

where the asterisk indicates the hypothetical perfect gas state. The integration path is

$$M(T,\rho) \rightarrow M^{*}(T,0) \rightarrow M^{*}(T_{ref},0) \rightarrow M^{*}(T_{ref},\mathcal{P}_{ref}/RT_{ref})$$

Using this approach, it is convenient to derive $(U - U^*_{ref})$ and $(S - S^*_{ref})$ and then to calculate the remaining residual properties from these two. The starting equations are

$$dU = C_v dT + R \left(\frac{\partial Z}{\partial (1/T)}\right)_{\rho} \frac{d\rho}{\rho}$$
(2)

and

$$dS = C_{v} \frac{dT}{T} + R \left[\frac{1}{T} \left(\frac{\partial Z}{\partial (1/T)} \right)_{\rho} - Z \right] \frac{d\rho}{\rho}$$
(3)

Then, the residual internal energy is

$$\frac{U-U^*_{\text{ref}}}{RT} = \frac{1}{T} \int_0^{\rho} \left(\frac{\partial Z}{\partial (1/T)} \right)_{\rho} \frac{d\rho}{\rho} + \frac{1}{T} \int_{T_{\text{ref}}}^{T} \frac{C_v^*}{R} dT$$
(4)

and the residual entropy is

$$\frac{S-S^{*}_{\text{ref}}}{R} = \int_{0}^{\rho} \left[1-Z + \frac{1}{T} \left(\frac{\partial Z}{\partial (1/T)} \right)_{\rho} \right] \frac{d\rho}{\rho} + \int_{T_{\text{ref}}}^{T} \frac{C_{v}^{*}}{R} \frac{dT}{T} - \ln \frac{\rho R T_{\text{ref}}}{P_{\text{ref}}}$$
(5)

The remaining residual properties may be calculated from the following:

$$\frac{H - H^*_{\text{ref}}}{RT} = \frac{U - U^*_{\text{ref}}}{RT} + \frac{PV - RT_{\text{ref}}}{RT}$$
$$= \frac{U - U^*_{\text{ref}}}{RT} + Z - \frac{T_{\text{ref}}}{T}$$
(6)

$$\frac{A - A^*_{\text{ref}}}{RT} = \frac{U - U^*_{\text{ref}}}{RT} - \frac{TS - T_{\text{ref}}S_{\text{ref}}}{RT}$$
$$\frac{U - U^*_{\text{ref}}}{RT} - \frac{S - S^*_{\text{ref}}}{R} - \frac{S^*_{\text{ref}}}{R} \left(1 - \frac{T_{\text{ref}}}{T}\right)$$
(7)

and

$$\frac{G-G^*_{\text{ref}}}{RT} = \frac{H-H^*_{\text{ref}}}{RT} - \frac{TS-T_{\text{ref}}S_{\text{ref}}}{RT}$$
$$= \frac{H-H^*_{\text{ref}}}{RT} - \frac{S-S^*_{\text{ref}}}{R} - \frac{S^*_{\text{ref}}}{R} \left(1 - \frac{T_{\text{ref}}}{T}\right)$$
(8)

Any reference state may be specified, but a recommended reference state is one for which H^*_{ref} and S^*_{ref} are set equal to zero. In this case, $G^*_{ref} = 0$, $U^*_{ref} = -RT_{ref}$, and $A^*_{ref} = -RT_{ref}$.

The only integrals required to calculate all the above residual properties are

$$\frac{1}{T} \int_{0}^{\rho} \left(\frac{\partial Z}{\partial (1/T)} \right)_{\rho} \frac{d\rho}{\rho}$$
$$\int_{0}^{\rho} (Z-1) \frac{d\rho}{\rho}$$
$$\frac{1}{T} \int_{T_{ref}}^{T} \frac{C_{v}^{*}}{R} dT$$

and

$$\int_{T_{ref}}^{T} \frac{C_v}{R} \frac{\mathrm{d}T}{T}$$

The first two require simple applications of the virial equation of state. The other two integrals involve only perfect gas specific heats. If the Leiden virial equation is used, the required derivatives may be obtained from

$$\left(\frac{\partial Z}{\partial (1/T)}\right)_{\rho} = -T^{2} \left[\left(\frac{\mathrm{d}B}{\mathrm{d}T}\right)_{\rho} + \left(\frac{\mathrm{d}C}{\mathrm{d}T}\right)_{\rho}^{2} + \dots \right] \qquad (9)$$

where B(T) and C(T) may be fit to an inverse temperature series.

Results

Tables I-III present the smoothed compressibility factors, densities, and residual thermodynamic properties for the three mixtures. The reference state for the residual properties is one for which H^*_{ref} are set equal to zero at $P_{ref} = 1.0$ kPa and T_{ref}

Figure 1. Pressure—enthalpy diagram for 50% CH₄–50% H₂O mixture. The reference state is $H_{ref} = 0.0$ and $S_{ref} = 0.0$ at $P_{ref} = 1.0$ kPa and $T_{ref} = 273.16$ K.

Figure 2. Pressure-enthalpy diagram for 75% CH₄-25% H₂O mixture. The reference state is $H_{\rm ref}$ = 0.0 and $S_{\rm ref}$ = 0.0 at $P_{\rm ref}$ = 1.0 kPa and $T_{\rm ref}$ = 273.16 K.

Figure 3. Pressure –enthalpy diagram for 90% CH₄–10% H₂O mixture. The reference state is $H_{ref} = 0.0$ and $S_{ref} = 0.0$ at $P_{ref} = 1.0$ kPa and $T_{ref} = 273.16$ K.

= 273.16 K. The perfect gas specific heat capabilities used for this calculation were obtained from a four-constant polynomial regression of the data of Woolley (22) for water and of Angus et al. (23) for methane. The properties listed in the tables have the following estimated accuracies: densities, 0.08%; compressibilities, 0.09%; internal energy, 0.20%; entropies and enthalpies, 0.15%; Helmholtz and Gibbs free energies, 0.17%. Finally, Figures 1–3 show pressure-enthalpy diagrams developed from the experimental data for each mixture.

Acknowledament

Technical discussions with M. R. Patel, M. A. Barrufet, J. C. Holste, K. R. Hall, and K. N. Marsh are acknowledged.

Glossary

- A Helmholtz free energy
- В second virial coefficient
- С third virial coefficient
- C, specific heat capacity at constant volume
- G Gibbs free energy
- Н enthalpy
- Ρ pressure
- R universal gas constant
- S entropy
- Τ absolute temperature
- U internal energy
- Ζ compressibility factor

Greek Letters

densitv ρ

Superscripts

perfect gas value

Subscripts

ref reference-state value

Literature Cited

- (1) Patel, M. R.; Eubank, P. T. J. Chem. Eng. Data 1988, 33, 185.
- (2) Rigby, M.; Prausnitz, J. M. J. Phys. Chem. 1968, 72, 330.

- (3) O'Sullivan, T. D.; Smith, N. O. J. Phys. Chem. 1970, 74, 1460.
- (4)Sultanov, R. G.; Skripka, V. G.; Namiot, A. Y. Gazov. Prom. 1972, 16,6.
- (5) Rettich, T. R.; Handa, Y. P.; Battino, R.; Wilhelm, E. J. Phys. Chem. 1981, 85, 3230.
- Marshall, D. R.; Saito, S.; Kobayashi, R. AIChE J. 1964, 10, 202. Aoyagi, K.; Song, K. Y.; Sloan, D.; Dharmawardhana, P. B.; Kobayashi, R. Proceedings of the 58th Annual Convention; Gas Processors Association: Tulsa, OK, 1979.
- Smith, G.; Sellars, A.; Yerlett, T. K.; Wormald, C. J. J. Chem. Ther-modyn. 1983, 15, 29.
- (9) Gillespie, P. C.; Wilson, G. M. Research Report RR-48; Gas Processors Association: Tulsa, OK, 1982.
- (10) Olds, R. H.; Sage, B. H.; Lacey, W. N. Ind. Eng. Chem. 1942, 29, 107.
- Scheloske, J. J.; Hall, K. R.; Holste, J. C.; Eubank, P. T. Energy Prog. (11)1983, 15, 29.
- (12) Anderson, L. N. M.S. Thesis, Texas A&M University, College Station, TX 1965
- (13) Patel, M. R. Ph.D. Dissertation, Texas A&M University, College Station, TX, 1986.
- (14) Burnett, E. S. U.S. Bureau of Mines Rep. Inv. 1963, 6267
- (16) Pope, G. P.; Chappelear, P.; Kobayashi, R. *Physica* **1972**, *57*, 127.
 (16) Hall, K. R.; Eubank, P. T. *Physica* **1972**, *61*, 346.
- (17) Burnett, E. S. Appl. Mech. 1936, 3, A136.
 (18) Hall, K. R.; Canfield, F. B. Physica 1970, 47, 99
- (19) Holste, J. C.; Watson, M. Q.; Bellomy, M. T.; Eubank, P. T.; Hall, K. R. AIChE J. 1980, 26, 954.
- (20) Joffrion, L. L.; Eubank, P. T. Fluid Phase Equilib. 1988, 43, 263.
- (21) Hall, K. R.; Eubank, P. T.; Holste, J. C. Chem. Eng. Educ. 1983, Summer, 124.
- Wooley, H. W. J. Res. Natl. Bur. Stand. 1987, 92, 35 (22)
- Angus, S.; Armstrong, B.; de Reuck, K. M. International Thermodynamic Tables of the Fluid State -5, Methane; Pergamon (23)Press: Oxford, 1978.

Received for review August 22, 1988. Accepted December 21, 1988. Financial support for this work was provided by the National Science Founda-tion (Grant CBT-8420547), the Gas Processors Association, and the Texas Engineering Experiment Station.

Phase Diagrams of Binary Solid Azole Systems

Fred R. Hilgeman,* F. Y. N. Mouroux, David Mok, and Michael K. Holan

Department of Chemistry, Southwestern University, Georgetown, Texas 78626

Phase diagrams of the binary solid azoles pyrazole, imidazole, triazole, and tetrazole were measured. It was found that all binary mixtures formed simple eutectic systems except the imidazole-tetrazole system, which was found to form a 1:1 solid addition compound. Enthalpies of fusion for the pure solids were measured and used to calculate ideal phase diagrams. With the exception of tetrazole-rich mixtures, the simple eutectic systems approached ideality.

Introduction

Mixtures of imidazole (C₃H₄N₂), pyrazole (C₃H₄N₂), triazole $(C_2H_3N_3)$, and tetrazole (CH_2N_4) have been shown to possess remarkable conducting properties at relatively low temperatures (1). Various binary and ternary mixtures of these azoles were shown to have specific conductivities in the range of 10⁻²-10⁻³ Ω^{-1} cm⁻¹ at 298 K. These mixtures also showed good solvent properties, dissolving many organic solvents and water. We measured the binary phase diagrams of these four solid azoles along with the enthalpies of fusion of the pure solids. All binary pairs except imidazole-tetrazole were found to form simple

eutectic systems with several mixtures showing near-ideal behavior.

Experimental Section

Materials. Imidazole (99%), pyrazole (98%), 1,2,4-triazole (98%), and 1H-tetrazole (99%) from Aldrich Chemical Co. were twice sublimed, giving melting points of 363.7, 343.2, 393.5, and 430.7 K, respectively. All compounds completely melted within a range of 1 K.

Melting Points. Phase transitions were determined by a sealed-tube method (2). Ampules were made from 7-mm glass tubing. The tube was purged with nitrogen, a small Tefloncoated stirring bar was inserted, and appropriate amounts of pure compounds were weighed into the tube. The tube was again purged with nitrogen, and a thermocouple well made of 4-mm glass tubing was inserted and the tube sealed closed. Temperatures were measured using a copper-constantan thermocouple attached to appropriate computer interfacing and the data read directly into a microcomputer. The thermocouples were calibrated against an NBS Certified thermometer while in the measuring cell. The transition points were measured in an oil bath whose temperature was carefully controlled to ±0.1 °C; a bright backlight was used to observe the pres-